Nickel-catalyzed Suzuki-Miyaura coupling of amides

Nicholas A. Weires, Emma L. Baker, and Neil K. Garg

Department of Chemistry and Biochemistry University of California, Los Angeles California, USA

DOI: 10.1038/NCHEM.2388

Joseph Salamoun Current Literature 11/21/15 Wipf Group

Joe Salamoun @ Wipf Group

12/29/2015

"Generalized" Suzuki-Miyaura Cross-Coupling Mechanism

"The mechanism of the oxidative addition-transmetallation-reductive elimination process is very complex and the exact details depend on solvents, ligands, the transition metals, and additives." – From *Transition Metals in the Synthesis of Complex Organia* Modeoutles, by Hegedus L. S. and Söderberg B. C. G., 3rd ed., 2010. 12/29/2015

Ni vs. Pd

Nickel	Palladium
-1, 0 , +1 , +2 , +3 , + 4	0 , +1, +2 , +3, +4
Smaller atomic radius	Larger atomic radius
Less electronegative	More electronegative
Harder	Softer
Facile oxidative addition	Facile reductive elimination
Facile β-migratory insertion	Facile β-hydride elimination
Radical pathways more accessible	
Less expensive	

Nickel catalysis: "If I had a nickel for every time"

Nickel catalysis: "If I had a nickel for every time"

Screening of amide substitutions

• Yields determined by ¹H NMR.

• More details on screening in SI.

Scope of cross-coupling of amides

* Yields determined by 'H NMR. Screening for functional group compatibility in SI.

DOI:10.1038/NCHEM.2388

Applications of cross-coupling

Some alternative methods for making diaryl ketones

Conclusions

- New application of nickel catalysis with potential for great utility, especially in med chem.
- □ Amides are relatively stable and widely accessible.
- □ Very good yields (but by NMR and most purifications by prep TLC)
- □ Limited scope (only aromatic amides).
- □ Synthetic advantage over traditional acylations not clear.
- Future Outlook:
 - If the Garg group can demonstrate the coupling of aliphatic amides with chiral aliphatic boronic esters, then this methodology could have a major impact.

Gibbs free energy profile of Ni-catalyzed Suzuki–Miyaura cross-coupling reaction of phenyl *N*,*N*-dimethyl *O*-carbamate **15** with phenylboronic acid. PCy3 was used as ligand in the calculations. For clarity, the cyclohexyl groups on the ligand are not shown.

Joe Sala 1900 1920 approved a second

Copyright © 2011 American Chemical Society

Published in: Kyle W. Quasdorf; Aurora Antoft-Finch; Peng Liu; Amanda L. Silberstein; Anna Komaromi; Tom Blackburn; Stephen D. Ramgren; K. N. Houk; Victor Snieckus; Neil K. Garg; *J. Am. Chem. Soc.* **2011,** 133, 6352-6363.

Gibbs free energy profile of the Ni-catalyzed Suzuki–Miyaura cross-coupling reaction of *N*,*N*-dimethyl phenyl *O*-sulfamate with phenylboronic acid. PCy3 was used as ligand in the calculations. For clarity, the cyclohexyl groups on the ligand are not shown.

Joe Sala 1900 192 10 1980 1980 19

Copyright © 2011 American Chemical Society

Published in: Kyle W. Quasdorf; Aurora Antoft-Finch; Peng Liu; Amanda L. Silberstein; Anna Komaromi; Tom Blackburn; Stephen D. Ramgren; K. N. Houk; Victor Snieckus; Neil K. Garg; *J. Am. Chem. Soc.* **2011,** 133, 6352-6363.

Transition-state structures of Ni-catalyzed oxidative additions of (a) *N*,*N*-dimethyl phenyl *O*-carbamate and (b) *N*,*N*-dimethyl phenyl *O*-sulfamate. PCy3 was used as ligand in the calculations. For clarity, the cyclohexyl groups on the ligand are not shown.

Joe Salanao UP2 (1) a 2019 3 Boup

Copyright © 2011 American Chemical Society

Published in: Kyle W. Quasdorf; Aurora Antoft-Finch; Peng Liu; Amanda L. Silberstein; Anna Komaromi; Tom Blackburn; Stephen D. Ramgren; K. N. Houk; Victor Snieckus; Neil K. Garg; *J. Am. Chem. Soc.* **2011,** 133, 6352-6363.

Computational study of catalytic cycle.

L Hie et al. Nature 524, 79-83 (2015) doi:10.1038/nature14615

Acyl C–N Bond Cleavage of Carbamate (Disfavored Pathway)

In the SI of L Hie et al. Nature 524, 79-83 (2015) doi:10.1038/nature14615

Possible catalytic cycle.

12/29/2015